/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

\
P

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Thermo-Mechanics of Rubberlike Materials
P. Chadwick

Phil. Trans. R. Soc. Lond. A 1974 276, 371-403
doi: 10.1098/rsta.1974.0026

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at
the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1974 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;276/1260/371&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/276/1260/371.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

A

'\
/N

=\

f
/|
AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

s \

y \

Py

0\

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 371 ]
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A theoretical study is made in this paper of the formulation of constitutive equations describing the
thermo-mechanical response of solid polymers in the temperature range in which they exhibit rubberlike
behaviour. An expression for the Helmholtz free energy of such a material is first constructed on the
basis of two assumptions which are motivated by physical arguments concerning the relation of the
molecular structure of a cross-linked polymer to its bulk response. The constitutive equations for the stress
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372 P. CHADWICK

and the entropy generated by the proposed form of the free energy function are then employed in a
detailed investigation of the extension of a cylindrical specimen under prescribed conditions of tempera-
ture and pressure, a situation which serves as a model of the experimental arrangement most frequently
used in laboratory studies of the mechanical and thermo-mechanical properties of rubberlike solids.
Qualitative consistency of the theoretical predictions with observed behaviour is shown to be assured,
over thefull range of circumstances for which measurements have been reported, by two simple inequalities
affecting one of the three response functions appearing in the stress-deformation—temperature relations.
The function concerned is closely related to the strain energy governing isothermal deformations of the
material at a selected reference temperature and it is associated, by the physical considerations referred
to above, with the contribution to the stress of the polymer network. This conclusion shows that a rational
macroscopic theory of rubberlike thermoelasticity can be developed in rather general terms. In particu-
lar, the requirement that the constitutive equations shall reproduce the anomalous thermo-mechanical
effects which are characteristic of solid elastomers imposes restrictions on the response functions no more
severe than those which ensure that the purely mechanical behaviour of the material is physically realistic.

In the remainder of the paper the capability of the basic theory for furnishing results quantitatively
agreeing with experiment is examined. Empirical forms of the three response functions are presented
which accurately represent measurements made in tests involving compression at different fixed tem-
peratures and stretching at the reference temperature. Numerical calculations relating to the analysis of
the extension of a cylinder, given earlier, are then described and compared with the results of experiments
in which thermoelastic inversion phenomena occur. Satisfactory agreement is secured, but it is noted that
insufficiency of material data for the rubbers used in the tests precludes an exact correlation of theory
and experiment.

The final section of the paper is concerned with isothermal deformations of rubberlike materials which
are mechanically incompressible (in the sense that volume changes can be brought about by thermal
expansion but not by loading at fixed temperature). This property closely approximates the typical
behaviour of natural and synthetic rubbers, but its incorporation into a general treatment of rubberlike
thermoelasticity presents difficulties and places an undesirable limitation on the scope of the theory. An
analogue is shown to exist between the constitutive equations for deformations at the reference temper-
ature and their counterparts in respect of isothermal deformations at other temperatures, and with its
aid the problem of the combined extension, torsion and uniform heating of a circular cylinder is solved.
Again, a numerical evaluation of the solution is compared with available experimental data.

1. INTRODUCTION

Experimental study of the thermo-mechanical behaviour of solid elastomers has a long history
and has thrown much light on the physical nature of rubberlike elasticity (see Treloar 1958,
chap. II and Flory 1953, chap. XI). The continuum approach to the thermo-mechanics of
highly deformable elastic materials has also been pursued over a lengthy period and may now be
said to have assumed a definitive form (see, for example, the presentations of Truesdell & Noll
1965,8§96; Green & Adkins 19770, chap. VIII and Chadwick & Seet 1971). This paper is an attempt
to unite the two lines of investigation. Specifically, our aim is to determine a form of the Helmholtz
free energy function which accurately represents the observed thermo-mechanical properties of
elastomeric solids and is faithful to accepted ideas on the manner in which the bulk response of
such materials is influenced by their characteristic molecular structure. It should be emphasized
at the outset that the present work is wholly phenomenological in spirit and that consideration
is given here only to ‘perfectly’ elastic behaviour, effects associated with crystallization and stress
relaxation lying outside the scope of our discussion.

At the macroscopic level the phenomenon of high elasticity consists first in an ability to sustain
large deformations and secondly in the recovery of an initial configuration, without appreciable
hysteresis, when applied forces are removed. These properties are exhibited predominantly by
substances, of which vulcanized natural rubber is the prototype, composed of molecules which
are polymerized into long chain-like structures and chemically cross-linked so as to form a three-
dimensional network. A solid material of this kind, operating at temperatures above its glass
transition zone, is referred to henceforth as a rubberlike material.
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THERMO-MECHANICS OF RUBBERLIKE MATERIALS 373

Next to high elasticity the anomalous thermoelastic properties of rubberlike materials represent
perhaps their most distinctive form of material response, a well known example being the increase
in temperature which accompanies the rapid elongation of a rubber strip. These effects have
been the subject of increasingly refined experimentation, mainly through the medium of tests
involving the extension of a cylindrical specimen under controlled environmental conditions. A
theoretical model of the situation obtaining in such experiments, discussed in §§4 and 6, plays a
leading part in our later considerations.

During the past 35 years much effort has been devoted to finding strain-energy functions
which satisfactorily account for the stress—deformation behaviour of natural and synthetic
rubbers under isothermal conditions, and success has been achieved in arriving at empirical
functional forms which are at once suitable for use in practical problems of stress analysis and in
close agreement with experimental data covering a wide range of strains.t Since the isothermal
strain—-energy function is obtained by evaluating the Helmholtz free energy at the fixed tempera-
ture at which deformation takes place, this work is directly relevant to the objectives stated above.

Our formulation of a theoretical model of rubberlike thermoelasticity accordingly starts, in
§2, with the derivation of an expression for the Helmholtz free energy of an elastic material in
which an isothermal strain—energy function appears explicitly (eq. (3)). We then introduce, in
§ 3a, two assumptions which may be regarded as characterizing an idealized form of rubberlike
response. One assumption specifies the degree of intrinsic symmetry possessed by the material
and the other places restrictions on the dependence of the internal energy upon the deformation
gradient and the temperature. The free energy function (eq. (7)) and the associated constitutive
equations for the entropy, the internal energy and the stress (eq. (9)—(11)) which follow from the
basic assumptions are the central results of the paper. The constitutive equations connecting the
principal components of stress to the principal stretches and the temperature (eq. (11)) contain
three scalar response functions which reflect in a natural way the influences of the polymer
network and of inter-molecular forces on the thermo-mechanical behaviour of the material
considered. It is shown in §4 that qualitative consistency of the theoretical model with observa-
tion is not crucially dependent on the form of these functions, but is ensured by merely subjecting
the response function representing the action of the network to a pair of inequalities. This im-
portant result demonstrates that constitutive equations for rubberlike materials can be con-
structed by very simple means and their adequacy established, in general terms, at a stage
preceding the detailed correlation of theoretical predictions with experimental results.

Empirical forms of the three response functions are proposed in §5 and shown to generate
theoretical curves agreeing closely with readings taken in tests involving the realization of
various homogeneous deformations at uniform temperature. The response function associated
with the polymer network is intimately related to the strain-energy function governing deforma-
tions in which the temperature coincides with a selected reference point and the material is
regarded as incompressible. In specifying this function appeal is therefore made to the extensive
research on isothermal strain—energy functions which has been mentioned and, in particular,
to results recently published by Ogden (19724, b). In the last two sections of the paper the response
functions introduced in §5 are employed in detailed calculations of thermo-mechanical effects
for which experimental results are available. The physical properties of the rubbers used in these
experiments are not known in sufficient detail to allow a complete determination of the constants
appearing in the response functions and it is not possible, therefore, at the present time, to make

T Recent reviews have been given by Ogden (19724, §2) and Treloar (1973, §6).
30-2


http://rsta.royalsocietypublishing.org/

"'\
A\
JA \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \

y \

Py

THE ROYAL A

N

—%

A A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

374 P. CHADWICK

a rigorous comparison of theory and experiment of the kind described in §5. Nevertheless, it
seems worthwhile to include a representative selection of the numerical results which have been
obtained, not only for purposes of illustration but also because the computations agree sufficiently
well with the experimental findings to sustain the confidence in the underlying theory which is
argued on more general grounds in §§3¢ and 4e.

The only investigation known to the writer} with objectives similar to those of the present
paper is due to Besseling & Voetman (1968). The method of approach of these authors is quite
different, however, from that followed here, being based upon a conjectured form of the internal
energy which is related to the well-known strain—energy function first propounded by Mooney
(1940). Comments on the results obtained by Besseling & Voetman are made at appropriate
places in the text of the paper, principally in §5. A non-linear theory of thermoelasticity for
rubberlike materials has also been given by Blatz (1969, §1V), but with reference only to homo-
geneous deformations and under hypotheses considerably more restrictive than those stated in
§3a. Blatz’s analysis relates to ideal elastomers, that is to elastic materials for which the internal
encrgy is independent of the deformation, and it is further supposed that volume changes are
entirely due to thermal expansion. The assumption of mechanical incompressibility is both
physically appropriate and mathematically convenient in a wide range of theoretical questions
relating to elastomeric materials and its inclusion in the model of rubberlike thermoelasticity
developed in §§3 to 5 is studied in some detail in §7.

2. PRELIMINARY ANALYSIS

When effects connected with the conduction of heat are absent, as they are taken to be through-
out this paper, an elastic material is characterized by a single scalar function, the Helmholtz
free energy A per unit mass. For homogeneous elastic materials, to which attention is confined, 4
is uniquely determined by the deformation gradient F and the temperature 7. The entropy §
and the internal energy U (each measured per unit mass) are given in terms of 4 by the relations

S =—-04/0T, U=A-T0oA[0T, (1)
and the specific heat at constant deformation ¢ is defined by
¢ =0U[0T = — T 0?4[0T? (2)

(see, for example, Chadwick & Seet 1971, pp. 32-41). On integrating equation (2), twice between
a reference temperature 7; and 7 there results, with use of (1),, the expression

A(F, T) = A(F, TO)% U(F,T) ("T]':;_ 1) _f; (?7:‘ 1) o(F, T)dT" (3)

for the free energy.

In its elementary form the statistical theory of rubber elasticity predicts that the free energy is
entirely entropic in origin and proportional to the temperature, no changes of internal energy
occurring in response to deformation (see Treloar 1958, pp. 66-70). When U is equated to zero
and the contribution to 4 of the specific heat is ignored equation (3) is seen to be consistent with
this result. The simple analysis given above therefore provides, in equation (3), a structurally
appropriate starting point for an enquiry into the form of the free energy function characterizing

t I am grateful to Professor S. Zahorski for drawing my attention to the work of Besseling & Voetman.
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rubberlike materials. In the first term on the right side of (3), 4(F, T;) is the strain-energy function
per unit mass for isothermal deformations of the considered material at the reference temperature
T,. As mentioned in §1 this function is the subject of extensive investigations and its explicit
appearance in equation (3) is of considerable advantage in the developments which follow.

3. THE FORM OF THE HELMHOLTZ FREE ENERGY FUNCTION FOR
A RUBBERLIKE MATERIAL

(a) Basic assumptions and their consequences

Equation (3) is a representation of the free energy 4 which is valid for all elastic materials.
In this section it is particularized to materials exhibiting rubberlike elasticity on the basis of two
physically motivated assumptions.

I. Atevery temperature in some interval.7” the material under consideration has a stress—free
configuration relative to which it is isotropic.

II. Over the temperature interval Z the internal energy of the material is expressible as the

sum of a function of the specific volume only and a function of the temperature only.

Before entering into the justification of these assumptions it is convenient to examine their
mathematical implications. Let 7j be chosen arbitrarily from .7~ and let N, denote the natural
configuration (i.c. the stress-free undistorted state) of the material at temperature 7;,. Then, on
account of the first assumption, the free energy depends upon the deformation gradient F through
the principal stretches a,, a,, a3 measured from N, as reference configuration and, moreover, 4 is
a symmetric function of these variables (see Truesdell & Noll 1965, p. 317).

Assumption IT implies that the internal energy at the reference temperature 7 is a function of
the volume only and, via equation (2),, that the specific heat ¢ depends wholly on the tempera-
ture 7. These properties allow the introduction of scalar response functions f, g and % defined as

follows:
S(@) = (polw) {A(F, Ty) — A(JAL T,)}, (4)
g(J) = (polx) A(JAL Ty), (5)
h(J) = (polaTyk) U(F, Tp). (6)

Here a indicates symmetrical dependence on a;, a, and ag, Iis the identity tensor and the dimen-
sionless specific volume J is defined by

J =detF = aja,a5 = pyfp,

where p is the current density of the material and p,, the density in the natural state N,. The re-
maining quantities in equations (4) to (6), x#, k¥ and «, are material constants relative to Ny, x
being the shear modulus, « the isothermal bulk modulus and « the volume coefficient of thermal
expansion. It is assumed that these constants are positive. With use of the definitions (4) to (6)
equation (3) takes on the simplified form
7
A0, T) = Lfta) 7+ £ (o) =t (T=T)| = [ | (go=1) TaT. )

Comparison of equations (3) and (7) shows that definitions (4) and (5) effect a decomposition
of the isothermal strain—energy function A(F,T;) into two parts, a dilatational component,
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376 P. CHADWICK

specified by the response function g and containing the bulk modulus «, and a distortional part
multiplied by the shear modulus # and involving the function f which vanishes when

a = ay = a3 (= J}),

that is when the deformation is a dilatation. This decomposition, which has been discussed from
rather different viewpoints by Spencer (1970, §10) and Ogden (19725, §2), is of fundamental
physical significance in rubber elasticity. Further comment is deferred to § 3¢, but we emphasize
at this stage that the partitioning into dilatational and distortional parts carried out in equations
(4) and (5) is a mathematical step entailing no assumption about the nature of the isothermal
strain—energy function.

In an isotropic elastic material the principal axes of the Cauchy stress tensor coincide with the
principal axes of stretch in the deformed configuration and the principal stresses oy, o,, 03 are

given byt
o; = poJ'a;(04/0a;) (8)

(see Truesdell & Noll 1965, p. 317). Substitution of the free energy function (7) into equations (1)
and (8) leads to the expressions

(@, T) = = fta) () - aTih () + (T S, (%)
U, T) = “Z"Klz(J) + f ;c(T’)dT’, (10)
i@, T) = g e @) otk ¢() ol () (T= T3, (11)

for the entropy, the internal energy and the principal stresses, the primes in (11) denoting
differentiation with respect to J.

(b) Normalization conditions
In the natural configuration Ny, a; = ay = a3 = J = 1, T = Ty and 0, = 0, = 03 = 0. Further,
the constants u#, £ and @ must have the meanings ascribed to them above and, without loss of
generality, it can be supposed that § and U vanish in N,. These requirements impose on the
response functions f, ¢ and % normalization conditions which are now derived.
Since fis a symmetric function of ;, a, and a5 which vanishes when @, = a, = 4, its derivatives
satisfy the relations

_o _ o
== =)
Oa, Oa, Oag
when a; = a, = a,. (12)
Ff_OF_ O G O o O,
0a? Qa3 0a2  "Qay0ay; " Oaz0a; Oa,0ay

In particular, equations (12),_5 hold in N, and it is apparent from (9), (10) and (11) that S, U
and the o are zero in this state if and only if g(1) = g’(1) = 0 and 4(1) = 0.
Results given by Chadwick & Ogden (1971, equations (8.17) and (3.19), ,) show that the

1 Here, and henceforth, the summation convention does not apply.
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instantaneous shear and bulk moduli of an isotropic elastic material relative to a configuration
which is conformal? to an undistorted state are respectively

0o; 0o, oo; 00, .
la (5;_671) o and ia (6 +25—) +30 (i %)), (13)
where a is the all-round stretch and o the all-round stress in the deformed configuration and the
derivatives are evaluated at @, = a, = a3 = a. Hence

T TN
~2\0a; 04/ 3\0a, ' “3a;/, L),

the subscript 0 signifying evaluation in V. It now follows from equation (11), with use of (12), that
(@f0ad)o = 5 (00 00;)0 = = (i +.)s | (14)
and g"(1) =

By virtue of assumption I the rubberlike material under consideration has a natural con-
figuration N at temperature 7" and since two undistorted states of an isotropic elastic material are
necessarily conformal (see Truesdell & Noll 1965, p. 85), the principal stretches, measured from
N,, are all equal when the material occupies the configuration N.] The derivatives 0f0q, therefore
vanish in N (by (12),_), as do the principal stresses o7;, and equatlon (11) reduces to the volume-—

temperature relation
¢ =Ty (J) (1 =T T) = 0. (15)

This equation determines implicitly the volume change associated with the conformal deforma-
tion Ny— N, and the derivative J-10J[dT, calculated from (15), is the volume coefficient of
thermal expansion of the material relative to N. On evaluating the expansion coefficient in N,
and equating the result to a it is found that 4'(1) =

The complete set of normalization conditions satlsfied by f, g and % has now been obtained and
for ease of reference the constraints on the volumetric response functions are collected together

and restated as
g(1)=g'(1)=0, g"(1)=1; A1) =0, K(1)=1 ~ (16)

(¢) Physical basis of assumptions I and II

In essence assumption I asserts that the mechanical response of a rubberlike material in a
natural configuration exhibits no preferred direction and that anisotropic behaviour cannot be
induced by merely imposing a uniform change of temperature. These properties, which are
almost universally adopted in theoretical work on the mechanics and thermo-mechanics of
unconstrained elastomeric materials, are due to the randomness of the arrangements taken up by
the chain molecules in a stress—free state. In the absence of intrinsic directionality in the mole-
cular network isotropy of response is assured and the situation is qualitatively unaffected by
heating. ‘

The physical conceptions underlying assumption II relate to the basic differences between the
structural mechanisms controlling the ways in which rubberlike materials respond to changes of
shape and volume. In being able to undergo large deformations at moderate levels of applied

t Two configurations are said to be conformal if the deformation carrying one into the other is a combination of
a rotation and a dilatation.

+ In physical terms, subjecting the material to a uniform temperature change T'— T, at zero stress simply
dilates it by an amount specified by equation (15).
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378 P. CHADWICK

stress rubberlike solids resemble liquids. On the other hand they differ sharply from liquids in
reverting to an initial configuration when the forces producing a deformation are removed. In
structural terms the similarity with liquids extends to properties in which intermolecular forces
are dominant; for example, rubberlike materials, like liquids, are nearly incompressible and have
large thermal expansion coefficients. The structural feature which distinguishes rubberlike solids
from liquids is the polymer network mentioned in § 1, and because of the pronounced extensibility
of the chain molecules the deformation of a rubberlike solid in shear is characterized by a low
elastic modulus (see Lodge 1964, pp. 80-86 for a more detailed discussion).

According to a postulate advanced by Flory (1961, §1) the free energy of an amorphous cross-
linked polymer is expressible as the sum of two terms, one, a function of deformation gradient and
temperature, representing the elastic contribution attributable to the network, and the other, a
function of volume and temperature, the liquid-like contribution arising from the interaction of
the chain molecules. The expression for the free energy obtained from equation (3) by assuming
that U (and hencec) isafunction of J and T'is seen to conform with Flory’s postulate. Furthermore,
in the simplified free energy formula (7) associations, suggested by the foregoing considerations,
between the first and second terms on the right (prefaced in turn by the shear and bulk moduli)
and the respective contributions of the polymer network and intermolecular actions are corro-
borated. The corresponding separation of effects apparent in the isothermal strain-energy
function A(a, T;) lends physical significance to the decomposition of this function which has been
carried out in §3a.

Inspection of equations (7), (9), (10) and (11) in the light of the interpretations just given
shows first that the internal energy must be regarded as arising exclusively from the secondary
intermolecular forces, and secondly that the parts of the free energy and the stress contributed by
the network are entirely entropic. There is abundant support in the older literature for the
proposition that the internal energy of a rubberlike solid is generally similar to that of a simple
liquid and that, in particular, it depends upon the deformation through the volume. And the
related conclusion that the contributions of the polymer network to the free energy and the stress
are due wholly to entropy changes was likewise widely accepted in discussions of the physical basis
of rubber elasticity published before 1960 (see Flory 1953, pp. 434-451 and Treloar 1958, pp.
20-38). More recently, however, important modifications of these ideas have been introduced and
confirmed experimentally. Measurements by Allen et al. (1963, 1971) involving the extension of a
rod at constant volume show that the internal energy of natural rubbers is weakly dependent
upon distortion and that the proportion of the retractive force on the specimen due to internal
energy changes is about 12 9,. Reported values of this fraction for other rubbery polymers vary
between 3 and 42 9, (see Treloar 1973, p. 789). The possibility of the internal energy of an indivi-
dual molecule varying with the conformation of the chain is excluded in the simpler statistical
theories, but it has been pointed out by Flory et al. (1959) that the presence of energy barriers
hindering free rotation about bonds will result in the chain having a configuration-dependent
internal energy. In consequence the influence of the network on the free energy and the stress is no
longer due entirely to entropy changes and the overall internal energy of the material contains a
contribution from the network depending upon the distortion (see Treloar 1973, §4 for further
details).

It is evident from the preceding discussion that assumption I1 is to be viewed as a first approxi-
mation, consistent with the broad structural concepts which have been outlined, but not fully
accurate in relation to current understanding of internal energy changes in rubberlike materials.
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THERMO-MECHANICS OF RUBBERLIKE MATERIALS 379

The over-simplification resulting from the neglect of the dependence of U upon distortion is
compounded by the further assumption (tantamount to ignoring the variation of the specific
heat ¢ with deformation) that U depends additively upon the specific volume and the tempera-
ture. In a liquid possessing an internal energy of this form the pressure would be a linear function
of the temperature with volume-dependent coeflicients and it is known that equations of state
of this type can provide a qualitatively satisfactory description of observed behaviour, the best-
known example being the van der Waals equation. It might be expected that, despite the de-
ficiencies in detailed modelling to which attention has been drawn, a continuum theory of rubber-
like thermoelasticity embodying assumption II will be similarly capable of reproducing the
essential features of a wide range of experimental findings, and it is confirmed in §§ 47 that such is
indeed the case.

We note at this point that the internal energy function surmised by Besseling & Voetman
(1968, eq. (3.3)) is the sum of a function of the specific volume, a function of the temperature and a
function of the deformation gradient which vanishes in a state of dilatation. There would be no
difficulty of principle in bringing into the present work, in a like manner, an additional response
function representing the dependence of U upon distortion, but it appears to the writer to be
highly desirable to explore first the potentialities of a constitutive theory with the simplest possible
ingredients. The arguments developed in the present paper are uncomplicated and the roles
of the essential components of the model, the network response function f and the volumetric
response functions g and £, are plainly delineated. Elaboration of this basic structure, allowing the
comparison of theory and experiment to be extended to the refined measurements of internal
energy changes to which reference has been made, is set aside for later consideration.

(d) Material data
In order to have in mind typical magnitudes of the material constants introduced in §3a we
list in table 1 data for a peroxide-cured vulcanizate of natural rubber taken from a paper by
Wood & Martin (1964). All the numerical results presented in the later sections are based upon
these values. The isothermal bulk modulus of the chosen material is seen to exceed the shear
modulus by a factor of 4.6 x 103, illustrating the disparity in the magnitudes of these moduli
indicated in §3¢. Henceforth we make systematic use of the strong inequality 4 < 1, where

o : N = plx, (17)
in deriving approximate results.

TABLE 1. MATERIAL CONSTANTS RELATIVE TO THE NATURAL CONFIGURATION AT
25 °C OF A PEROXIDE-CURED VULCANIZATE OF NATURAL RUBBER
(From Wood & Martin 1964.)

density (p,) 906.5 kg m~3

shear modulus (u) 4.2 x 102 kPa

isothermal bulk modulus (k) 1.95 x 108 kPa

volume coefficient of thermal 6.36 x 10—+ K1
expansion (o)

specific heat at constant 1662 J kgt K1

deformation (c,)

31 Vol. 276, A.
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4. EXTENSION OF A CYLINDER: THEORETIGAL CONSIDERATIONS

Experiments involving the elongation of a cylindrical specimen have been extensively applied
to rubberlike materials and, in particular, the investigation of thermoelastic behaviour has been
conducted almost exclusively on the basis of such tests. In this section a theoretical study is
made of the situation shown in figure 1 which accurately represents the uniaxial experiment in
question. The cylindrical test-piece, of arbitrary simply connected cross-section, is subjected to a
uniform pressure IT over the whole of its boundary and maintained at uniform temperature 7.

lII
X, X
o—II- E / _ o-1I
Xy

0 -

I

Ficure 1. Illustration of the extension of a cylindrical specimen.

Itis placed in a state of simple extension by the application to its plane end-faces of a uniform nor-
mal traction o (measured per unit area in the deformed configuration). Taking the 3-direction
of a rectangular Cartesian coordinate system to be alined with the generators of the cylinder the
principal stretches and the principal components of stress are thus given by

ay=ay=(JANVY, ay=4; oy=0,=-1I, o3=0-1I, (18)

where A is the axial stretch and, as before, J = @, 4,45 is the dimensionless specific volume. No
body forces act, the cylinder being held in equilibrium by the action of the prescribed surface
tractions alone.

In order to make use of the principal stress-stretch—temperature relations (11) we appropriately
redefine the network response function f by setting

F(J,4) = f((JA7Y)3, (JA-Y)E, A). (19)
Since fis invariant under interchange of its arguments a; and a,,
Offoay = Of[0ay = (JA)XF,, Offday = JAF,+F,, (20)

where the derivatives of fare evaluated at a; = @, = (JA~)%, a3 = A and a suffix notation, typi-
fied by F; = 0F[0J, is used for the derivatives of F. On substituting for the principal stretches and
stresses from equations (18) into (11) we obtain, with use of (17) and (20),

, T\ ., IIT;
VE, A) 48 ()=, (1= ) W) =~ 23, (21)
o= pJrAF,(J, A) —77:, (22)
0

and equation (9) yields the expression

§ = = S (7, 4) +g0) ~ Ty} + [ o) (23)


http://rsta.royalsocietypublishing.org/

'\
o
A \
=\
AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THERMO-MECHANICS OF RUBBERLIKE MATERIALS 381

for the uniform value of the entropy in the deformed cylinder. In experimental work it is custo-
mary to measure the applied stress per unit area in the reference configuration N,. From equation
(22) this traction, s (a component of the nominal stress tensor), is given by

s = JA-e = uF,(J, A) (TITy). (24)

Equation (21), which we regard as determining J implicitly as a function of 4, 7" and I7, has

the solution
J=J— 9F;(J, A) + (ITTy[x T)
§U) — Tt — (T THA)

+0(7%), (25)

provided that I7 < «(T|T;), J being defined as a function of 7 only by the volume-temperature
relation (15). Itis assumed in the remainder of this section that the pressure acting on the cylinder
is atmospheric (I7 = 1.01 x 102kPa). The proviso II < «(T[T;) is then satisfied over the entire
temperature range within which rubberlike behaviour is encountered and equation (25) supplies
the approximation J = J to leading order in powers of 7.

In the subsections which follow we examine the response of the cylinder under isothermal,
isometric, isotonic and isentropic conditions (in which 7}, 4, o-and S are in turn held fixed), and it
is convenient to set down here the inequalities

(d/dA) {AF,(1, A)} > —F,,(1,4) >0 for A >0 (26)

to which repeated reference is made. When J = 4 = 1 (i.e. in the natural state N,), F, F; and F,
each vanish and the normalization conditions (14), applied to the definition (19), give

FJJ(l’ 1) =4, FJA(lsl) =-1, FAA(la 1) = 3. (27)
The inequalities (26) are evidently consistent with (27) and they imply that

F(1,4) >0, Fy;(1,4) >0, F,(1,4) <0 for 0<4< 1,} 28
F(1,4) >0, F;(1,4) <0, F,(1,4)>0 for 4> 1. (28)

(@) Isothermal behaviour

We consider first the variation of the nominal applied traction s with the extension of the
cylinder at different fixed values of the temperature 7. In experiments of this kind the measured
axial stretch, , is reckoned from the natural state N of the specimen at the ambient tempera-
ture 7" and, recalling the penultimate paragraph of §35, A is connected to A, the axial stress
relative to N,, by the relation A4 = J4A. Thus, from equation (24),

§ = ;U‘FA(J: J%/I) (T/’Iz)): (29)

J and J being given by equations (21) and (15) respectively. As pointed out above, J and J
differ only by a term of order # in tests performed at atmospheric pressure and because of the
comparative smallness of a7} it follows from equation (15) that J is weakly temperature depen-
dent.} Axial stress—stretch isothermals computed from equation (29) therefore fan out from the
origin in the first quadrant of the (s, A)-plane, the initial gradient increasing with 7 (cf. Anthony
et al. 1942, p. 834; Treloar 1958, p. 30 and figure 4 below).

1 Using the data listed in table 1, a7y = 0.190. A discussion of the volume-temperature relation (15) is
included in §55 below; see, in particular, the first two columns of table 2.

31-2
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At thereference temperature 7y, J = 1and A = A. In the leading approximation equation (22)
then reduces to

o= udF,(1,4), v (30)

and, to terms of order one in #, J = f—wyFJ(l,A), (81)

where J = 1 — (IT[k) + O(y?) specifies the compression arising from the action of atmospheric
pressure at temperature 7. It is a.-matter of common experience with rubberlike materials that o
is an increasing function of A, negative when 0 < 4 < 1 and positive when A > 1, but the
determination of the variation with extension of the volume change J—.J calls for sensitive
experimental techniques. Several series of measurements have been carried out (see Gee ¢t al.
1950; Hewitt & Anthony 1958; Allen e al. 1963), each demonstrating that J — ./ increases mono-
tonically with /4 through positive values which are of the same order of magnitude as # over the
range of extensions investigated (up to 120 %; see figure 5 below). The inequalities (26), with
their corollaries (28), are seen to guarantee that, to the stated orders of accuracy, equations
(30) and (31) reproduce the properties which have just been described. These inequalities may
therefore be interpreted as sufficient conditions for the rubberlike material under consideration
to exhibit physically realistic response in simple extension at the reference temperature 7.

(b) Isometric behaviour

We turn next to the variation with temperature of the axial stress s when the length of the
cylinder is held fixed, that is for a specified value of the axial stretch A relative to N,. This varia-
tion is given by equation (24) with J defined implicitly by (21). For tests at atmospheric pressure
J can be replaced by J and in view of the weak temperature dependence of J, pointed out in
§4a, sis nearly proportional to 7. This property is confirmed experimentally (see Meyer & Ferri
1935, p. 578; Anthony ef al. 1942, p. 831 and Shen ¢/ al. 1967, p. 794), isometric curves being
obtained which are indistinguishable from straight lines. The gradient 0s/0 7" is found to increase
monotonically with A from negative values at extensions below about 10 9, to positive values at
higher stretches. This is an example of the anomalous thermoelastic behaviour, mentioned in § 1,
which is a characteristic feature of rubberlike materials and we now look into the possibility of an
inversion of the sign of 0s/07" being predicted by equations (24) and (21).

If, to a close approximation, there is an isometric curve on which s is constant the derivative
0s/0T, computed from equations (24) and (21) and evaluated at 7" = Tj, vanishes for some
value of A exceeding unity. This requirement is easily shown to take the form

aly b (J) +qu11

ﬁA<J3 A) +FJA(J) A)gl/(J) +/'7}"JJ(J> A) =0 (32)

with J satisfying W F (S, A) +p U} +g'(J) = 0. (33)

To leading order in powers of 7 equations (33) and (16), give J = 1 and, with use of (16), ,,

equation (32) reduces to
Fo(1, 4) +oTyFy (1, 4) = 0. (34)

If F satisfies the inequalities (26) (and hence (28)) the two terms on the left side of equation (34)
are of opposite sign when /4 > 1and, by virtue of (27),, their sum is negative when A = 1. Itfollows
that equation (34) has a root exceeding unity if «7j is sufficiently small. More precisely,

A =z 1+ 3T,
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with error of order (a75)?2, and on using the data given in table 1 inversion is found to occur at an
extension of about 6 %, in fair agreement with the quoted experiments. When 0 < 4 < 1, corre-
sponding to uniaxial compression of the cylinder, both terms on the left of equation (34) are
negative, indicating that the stress—temperature coefficient 0s/07 is of one sign. Physical con-
siderations supporting this conclusion have been put forward by Gee et al. (1950, p. 1106). As
in §4a the inequalities (26) therefore ensure that the response of the cylinder is in accord with
experience and the emerging significance of these conditions is underlined further in §§4¢ and d.

(¢) Isotonic behaviour

Under this heading we study the variation with temperature of the axial stretch /1 and the
dimensionless specific volume J when the stress o (and the pressure I7) are fixed. Of particular
interest are the gradients of the 4-7 and J-T curves which determine the linear coefficients of
thermal expansion relative to the deformed configuration of the cylinder in the axial and trans-
verse directions. These coeflicients, v, and vy, respectively, are defined by

vy = A7QART), v, = (JA)HRIANOT} = H{JI1@QJRT) -7}, (35)

the derivatives being evaluated with o and I7 held constant.

We proceed to calculate y, and 7y, at the reference temperature 7;. On differentiating equa-
tions (21) and (22) with respect to 7"in the appropriate manner, evaluating at 7' = 7; and using
the definitions (35), a pair of linear relations between the expansion coefficients is obtained,
namely

(55 0 0 8)+ )74 20500 I ), = ) i
{JFJA(J’ A) +AFAA(J’ /1)}’)/" + Z{JFJA(J’ A) - FA(J’ A)}’YJ_ = TO_II"A(*L A)'
(36)

When the extension 4 is specified, JJ is given by equation (33) (the result of setting 7" = Tj in (21))
and the values of y, and vy, are then found by solving equations (36). In the leading approximation
employed in the analyses of isothermal and isometric response, J = 1 and the terms in equation
(36), containing 7 are negligible. With use of the normalization conditions (16), ; equations (36)
then lead to the expressions

Vi = [To(d[dA) {AF,(1, A} 7{ = (1 —aT) Fy(1, A) =Ty Fy (1, 4)3, } (37
vo= [2T4(d[dA) {AF, (1, )} 7H{(1 = aT5) Fy(1, A) + o[ (d[dA) {AF(1, )} + Fy4(1, )]},

for the expansion coefficients. When A = 1 equations (37) refer to the natural state N, and the
expected equality of y, and 7y, to §a is easily verified with the aid of equations (27), .

Data compiled by Flory (1953, p. 437) from experimental results tabulated by Joule (1859,
p. 106) show that for 4 > 1, y, decreases steadily as the axial stretch increases, ultimately through
negative values (see figure 7 below). This is a further manifestation of the anomalous thermo-
elastic behaviour of rubberlike materials, the inversion in the sign of y, occurring at an extension
of about 8 %,. According to James & Guth (1943, p. 465) v, is positive, their arguments being
based upon expressions resembling (37) in which the counterpart of the response function F is
derived from a statistical theory of the network adopting a Gaussian form for the entropy of the
molecular chains. In compression (0 < /A < 1) the axial expansion coefficient displays no
inversion effect (see Meyer & van der Wyk 1946, pp. 1842-1843).
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When the inequalities (26) and (28) hold and aTj is sufficiently small it is apparent from
equations (37) that the variations with A of y, and y, are fully consistent with the foregoing
account, the axial stretch at which y, = 0 being given by

(1 —aly) Fy(1, A4) + Ty Fy (1, 4) = 0. (38)

This equation, like (34), yields A = 1+ }aT,+ O((aT3)?) and the inversion point of about 6 %,
calculated from the data contained in table 1 is satisfactorily close to the experimental value.

(d) Isentropic behaviour

When the cylinder is extended without change of entropy equation (23) holds with § taking

the constant value

§ =~ (klpoTo) {g (J) —&Tyh(J)} = — (a[py) {1+ O(n)},

and the resulting relation, in conjunction with equation (21), enables us to determine J and 7'
when the stretch 4 and the pressure I7 are specified. The axial stress needed to maintain the
deformation is then given by equation (22) (or (24)). Experiments on the isentropic extension
of cylindrical specimens of rubberlike materials are directed towards the measurement of the
variation with 4 of the temperature change 7'—7; at atmospheric pressure (see Joule 1859,
pp- 105, 124; James & Guth 1943, p. 475; Flory 1953, pp. 436-439; Treloar 1958, pp. 38—43 and
figure 8 below). Initially, as 4 increases from unity, the temperature falls, as would be expected
in a ‘conventional’ material in view of the dilatation which occurs (see equation (40), below).
At about 7 9, extension, however, the temperature passes through a minimum and subsequently
it rises with increasing rapidity, positive values of 7'— T; being observed at stretches exceeding
about 13 %,. In compression a steady increase in temperature is observed. Here, therefore, is
a third example of anomalous thermoelastic behaviour occurring in the extension of a cylinder,
but not in compression.

In order to investigate the variation of temperature with axial stretch on the approximate
theoretical basis adopted in the earlier parts of this section expansions of J/ — 1 and 7"— 7 in direct
powers of 7 are substituted into equations (21) and (23) (with § = §) and the leading terms
obtained by equating coefficients of like powers. In applying this procedure it must be recognized,
however, that the dimensionless quantity p,c, To/k, where ¢, = ¢(T;), is O(1) and not of the first
order in % as might appeart. With this gloss it is found that

-7, _ 14

Ty~ pocoTo(l+e
in which the error is O(%?) and € = a2Tyk[{pyc,(1+4%9)} is the thermoelastic coupling constantt
of the material relative to N,. On writing down the condition for (07704)g to vanish we recover
equation (34) and it follows from the discussion of that equation given in §44 that if the inequal-
ities (26) and (28) hold and aTj is sufficiently small the stretch dependence of the temperature
predicted by equations (21) and (23) follows the trends observed experimentally. The extension
at which inversion of the sign of (077/04)g occurs, estimated with the aid of the data given in
table 1, agrees closely with the measured value.

An exact calculation of the temperature-stretch and volume-stretch coefficients (077/04) g and
(0J/04) ¢ based upon equations (21) and (23) shows that, in the natural state N,

(0T [0A)5 = — («Tyk[pocy) (9[0A) g = — Ty E[3pycefl + 26(1—v)}], (40)

){F(l,/l)+oc7},FJ(1,/1)} (39)

1 The values of pgcy To/« and € derived from the data listed in table 1 are 0.225 and 0.160 respectively.
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where

E=3p/(1+3n) and v=3(1-4n)/(1+3n)
are respectively the isothermal Young modulus and the isothermal Poisson ratio of the material
relative to N,. Equation (40) agrees with results obtained by the writer in a study of the propaga-
tion of thermoelastic disturbances in a thin rod (see Chadwick 1962, in particular, equation (35)).

(¢) Discussion

Thermoelastic inversion phenomena in rubberlike materials are accounted for physically by
the competing influences of the chain molecules and the secondary intermolecular actions. The
latter respond to a rise in temperature by an increase in pressure at constant volume and by
expansion at constant pressure, while an increase of volume at constant entropy is accompanied
by a fall in temperature. On the other hand, the pattern of behaviour associated with the chain
moleculesis ‘unconventional’. The individual links of the chains execute random thermal motions
and the overall state of disorder is reduced by tension and by uncoiling and increased by heating.
The effect of a rise in temperature is therefore to increase the tension at constant end-to-end
distance and to decrease the separation of terminal points at constant tension, while elongation
under isentropic conditions (in which the state of disorder is preserved) causes the temperature to
rise. These opposing tendencies explain the three inversion effects encountered in §§ 4 o—d. Because
the values of the mean normal stress attained in the experimental situations considered are much
smaller than the bulk modulus of the material, volume changes, which are associated with inter-
molecular forces, are almost entirely due to thermal expansion. Adequate account of secondary
forces is therefore taken by allowing for the positive thermal expansivity of the material in its
unstressed state. At small extensions thermal expansion effects are dominant and the locations
of the actual inversion points are substantially determined by the value of the appropriate expan-
sion coefficient (see Anthony et al. 1942, pp. 833, 836 and Treloar 1958, p. 29, 1971, pp. 52-53).

In the theoretical treatment of the extension of a cylinder which has been given in the preceding
subsections the collective response of the chain molecules is represented by the function F and
intermolecular actions by the volumetric response functions g and £, and the role of the expansion
coefficient « in determining the axial stretch at which the contending effects are in balance is
clearly displayed in equations (34) and (38). The results obtained therefore lend considerable
support to the physical basis of the model of rubberlike thermoelasticity constructed in §3 and
confidence in the theory is further increased by the mildness of the hypotheses which have been
made regarding the forms of the response functions ¥, g and 4. In fact nothing has been assumed
about the volumetric response functions g and 4, and it is apparent from the details of the analysis
that the results are rendered insensitive to the precise nature of these functions by the smallness
of the volume changes and hence by the disparity between the shear and isothermal bulk moduli
in the natural state N,. The network response function F has been restricted only by the con-
stitutive inequalities (26) which, subject to a7, being sufficiently small, secure qualitative agree-
ment between theory and experiment over the whole range of behaviour investigated. It may be
concluded, in particular, that a qualitatively correct account of the thermoelastic response of
rubberlike materials can be developed without making explicit appeal to microscopic considera-
tions, much less to a specific type of molecular statistics.

Quantitative evaluation of the theoretical model in relation to experimental results depends of
course upon the availability of more detailed information about the response functions f, g and #,
the requirements in respect of f being much more stringent than in the cases of ¢ and 4 for the
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reason stated in the last paragraph. Granted a comprehensive understanding of the structure of a
given rubberlike material and of the forces operating within it, one might look to the statistical
theory of polymers for a means of determining these functions. Unfortunately, results obtained to
date are far from complete and calculations of the network response function fare in satisfactory
agreement with experiment only over rather limited ranges of deformation.} In seeking functional
forms of f; g and % for use in the remainder of this work we are therefore obliged to proceed on an
empirical basis. In § 5a expressions for the volumetric response functions g and % are adduced from
the results of experiments involving isothermal compression at different temperatures, and in
§5¢ a form of the network response function fis adopted which is closely related to an isothermal
strain-energy function for incompressible rubberlike materials recently proposed by Ogden
(19724). Utilizing these functions we pursue numerically in § 6 the various aspects of the behaviour
of a cylindrical test-piece in extension which have been introduced in §§ 4 a—d.

5. EMPIRICAL FORMS OF THE RESPONSE FUNCTIONS
(a) The volumetric response functions g and h

The response of a rubberlike material to volume changes is studied experimentally by the
application of pressure under isothermal conditions. To a close approximation the strain pro-
duced in the test-piece (relative to the reference configuration /) is a uniform dilatation, thatis a
homogeneous deformation in which the principal stretches are all equal.} A theoretical account
of compression tests is therefore obtained by entering into equations (11) the expressions

Gy =ay=ay=J% o =0,=0,=-P

for the principal stretches and stresses. Here P is the applied pressure and the specimen is main-
tained in equilibrium by this traction without the intervention of body forces. In view of the
conditions (12),_; we arrive directly at the pressure-volume-temperature relation

Plk = —g'(J) (TIT) + ok’ (J)(T=Tp)- (41)
At the reference temperature 7; equation (41) assumes the simple form
Pl = —g'(J) (42)

which is appropriate for comparison with the results of compression tests carried out at room
temperature. Experiments of this kind have been widely reported in the literature and much use
has been made of an observation of Murnaghan (1951, pp. 71-79) that measurements on certain
metals can be accurately fitted by taking

o) =l(.]+7zl__i]~m+1_

m

’fl) (m > 1). (43)

This response function, which is suggestive of an intermolecular force potential, is seen to satisfy
the normalization conditions (16),_s. A close agreement between curves computed from equations
(42) and (43) and the results of compression tests on a variety of vulcanized rubbers at pressures

m

T Recent developments in the statistical theory of rubber elasticity are described in papers by Gee (1966)
and Edwards (1971).

1 Equation (41) also applies in the case of a cylindrical specimen confined within a rigid, tight-fitting sleeve
and subjected to pressure on one or both of its end-faces, provided that the smallness of # is held to justify the
neglect of the first term on the right of equation (11) (cf. Ogden 19725, pp. 575-576).
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up to about 5 x 108kPa (= 50kbar) has been exhibited by Blatz (1969, pp. 27-29), the value of
m lying between 8 and 12 depending upon the composition of the material.
A variant of equation (44), preferred by Ogden (19725, §3), is

gJ) =m2?mlnJ+Jm—1) (m>1) (44)

which also meets the requirements (16), 5. The expressions for g'(J) derived from (43) and (44)
differ by a factor of J which varies only between 1 and about 0.8 over the range of pressures for
which experimental results are available. The effectiveness of the empirical form (43) in accurately
representing experimental data on rubberlike materials is therefore equalled by (44)f, as is
evident from the excellent agreement displayed in figure 1 of Ogden’s paper between results for
three different rubbers and the variation of mP[k with 1 —J given by equations (42) and (44)
withm = 9.

Isothermal compression tests in which the temperature can be set at different values are more
difficult to perform, but results for rubbers of carefully controlled composition have been pub-
lished and some measurements of Wood & Martin (1964) on samples of the peroxide-cured
vulcanizate of natural rubber referred to in § 3d have been selected for detailed study. The ranges
of pressure and temperature spanned by these experiments are quite modest, the pressure varying
between zero and 5 x 10tkPa (= 0.5kbar) and the temperature between 0 and 25 °C, but success
in accurately representing the results in the form (41) is found to depend rather sensitively on the
shape ascribed to the second volumetric response function . The folloWing procedure was
adopted.

The reference temperature in the experiments of Wood & Martin is 25 °C and the values of
kand o are asshownin table 1. With k = 1.95 x 108kPaand m = 9 equations (42)and (43) provide
a J—P curve closely fitting the measurements at 7" = 7;. The remainder of the experimental
data were then used in conjunction with equations (41) and (43) and the stated values of k, « and
m to prepare a plot of #'(J) against J. The points corresponding to the 18 measurements of
specific volume are too scattered for the nature of the function %’ to be clearly revealed by this
exercise, but it can be concluded with reasonable certainty that 0 < 4'(J) < 1 and £"(J) > 0
over the range of values of J attained in the tests (0.964 < J < 1). The simplest functional form
which meets these conditions is A’ (J) = J?, where p > 0, and the experimental results offer scant
support for more elaborate possibilities. Observing the normalization conditions (16), ;, we are

therefore led to the expression
h(J) =n-t(J*—1) (n>1) (45)

for & and hence, in view of our earlier use of (43), to the form
=== (1= J™) + (T -T)Jr? (46)

of the pressure-volume-temperature relation. Estimates of the exponents m and n appearing in
equations (43) and (45) were next obtained by evaluating the derivatives of the isothermal bulk

1 A third form of the volumetric response function g, recommended by Wood & Martin (1964, §9), is
g(J) = mexp {m(1—-J)}—1—-m(1—=J)] (m > 0).
The pressure~volume relation obtained by substituting this expression into equation (42) is known as the Tait
equation (cf. Tait 1889, § VII).

32 Vol. 276. A.
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388 P. CHADWICK

modulus with respect to pressure and temperature in the reference configuration N,. The for-
mulae for these coefficients which follow from equation (41) are

—g"(1)—1 and kT [1+aTifg"(1) - A"(1) +1}] (47)
respectively and, with use of (43) and (45), the expressions
m and —kTyHaTly(m+n—1)—1}

are obtained. The values of the two coefficients computed from the experimental data by the
method proposed by Wood & Martin in §3 of their paper are 8.06 and —7.84 x 103kPa K-,
leading to the estimates m = 8.1, n = 4.6. With these exponents and the values of x and « given in
table 1, equation (46) provides P-J curves which agree well with the full set of experimental
results. It was evident at this stage, however, that some adjustment of the values of m and n would
provide an improved fit and after further computation the final choice m = 9, n = § was made,
giving the satisfactory representation of the experimental data shown in figure 2.

An attempt to fit theoretical curves to the measurements of Wood & Martin has also been made
by Besseling & Voetman (1968, §4). The pressure-volume-temperature relation adopted by
these authors is of the form (41) with

(aTp)? { 2noTy— 1 } Ty, 7
= —_—— -n ——2(Jr—-1
g(J) 2nocT0—11n 1+ 7T, (J"—1)}+ - (Jr=1), (49)
WJ) = nY(Jr—1),
0.020[~
T=T;=25°C
X
A
0.010—
|
0 ).96 0.98 1.0

J—1

Ficurk 2. Experimental results of Wood & Martin O compared with theoretical curves based upon the pressure—
volume—temperature relation (46) with data from (57) (i), (ii).
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and n = H(1/oTy) + (eapoco)}- (49)

Thus the exponent zis not an independent material constant as in equation (45)t. The agreement
between theory and experiment shown in figure 1 of the paper is not close and from this Besseling
& Voetman infer first that the dependence of the internal energy upon volume has a more com-
plicated form than is represented by their equations, and secondly that it is necessary to take into
account the temperature dependence of the specific heat at constant deformation ¢. These con-
clusions are not supported by the present work since the internal energy function obtained by
combining equations (10) and (45) is much simpler than Besseling & Voetman’s equation (3.3),
while the pressure-volume-temperature relation (46) is independent of ¢ on account of assump-
tion II. The deficiencies in the internal energy function of Besseling & Voetman must therefore
be attributed to an inappropriate choice of those terms which give rise to the coefficient of T'in the
pressure-volume-temperature relation. In particular, it follows from equations (48) that

g"(1) = bn—3—2n2aTy—2(aTy)Y, A"(1) =n-—1,

and, with use of equation (49) and the data given in table 1, the values of the pressure and tem-
perature coeflicients of the isothermal bulk modulus, calculated from (47), are found to be 0.803
and 2.99 x 103kPa K- respectively. Compared with the values derived from the experimental
results of Wood & Martin (quoted above), the first of these coefficients is an order of magnitude
too small and the second one has the wrong sign.

The considerations outlined in this subsection indicate that a variety of empirical forms of the
first volumetric response function g (of which (43) and (44) are two) can be used with confidence
over the whole of the observed range of compressions, but that the expression (45) for the second
function 4 is likely to have a much more limited range of applicability. It is fortunate that, in the
solution of particular problems, the influence of # is muted first by the smallness of 7 and then by
the comparative smallness of a7,

(b) The pressure-volume—temperature relation (46)

In equation (46), k, @ and 7, are positive constants and the exponents 7 and » each exceed
unity. The temperature is therefore uniquely determined when P and J are known and the pres-
sure when 7 and J are given, but the existence of a solution for J corresponding to assigned values
of P and T calls for a brief discussion.

Recasting equation (46) in the form ¢(J) = 0, where

W) = 1= I = malTy| T) (T~ T)) J*=4+ m(PTy/K T)
and

#'(J) = mI-m= —m(n— 1) Ty T) (T= Ty) Jn2,
we note first that ¢(J) - — o0 as J -0, and that ¢(J) -0, 1 +mP[k or —o0 as J - o0 according
as T < Ty, T = Tyor T > Tj. Since ¢'(J) > Ofor all J > 0 when T < Tj it follows that equation
(46) has a unique solution for J if T'< T or T =T and P > —m~'. When T > T, ¢’ has a
single positive zero J*, given by

J¥ = {(n—1) a(Ty| T) (T = To)}-mn=07,

and the number of positive zeros of ¢ is therefore two, one or none according as ¢(J*) is positive,
zero or negative. We conclude that the region of validity of the pressure-volume-temperature

1 In conjunction with the data listed in table 1, equation (49) gives n = 3.1, in fair agreement with the value
of 2.5 adopted above. : :
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390 P. CHADWICK

relation (46) is delimited by the curve in the (P, T') - plane sketched in figure 3. Since in practice
interest is confined to positive pressures and a range of temperatures bounded below by the glass
transition zone of the material considered (77, ~ 0.7, say) and extending about 150 °C above
the reference level (77T, ~ 1.5), this limitation, which is devoid of physical significance, presents
no difficulty. Of the two positive zeros possessed by ¢ in the portion of the region of validity for
which T > T, (shown shaded in figure 3), the smaller one decreases and the larger one increases
with pressure at a fixed temperature. The larger solution of equation (46) is thus associated with
unphysical behaviour and must be rejected.

(TITo)—1
1.2

singular point
Plk =—1/m 01 0 01

Ficure 3. Region of validity of the pressure-volume-temperature relation (46) (data from (57) (i), (ii)).

TABLE 2. VALUES OF J SATISFYING THE PRESSURE-VOLUME—TEMPERATURE
RELATION (46) FOR VARIOUS PRESSURES AND TEMPERATURES
(data from (57) (i), (ii))

-1, Plk = 0
°C ) Pl = 0.001 Plk = 0.01 Plk = 0.02 Plk = 0.05
120 1.0961 1.0938 1.0759 1.0595 1.0231
100 1.0748 1.0730 1.0583 1.0442 1.0117
80 1.0569 1.0554 1.0427. 1.0303 1.0007
60 1.0410 1.0397 © 1.0285 1.0174 0.9902
40 1.0265 1.0253 S 1.0152 1.0051 0.9799
20 1.0130 1.0119 1.0026 0.9933 0.9697
0 1.0000 0.9990 . . 0.9905 0.9818 0.9596
—20 0.9874 0.9865 0.9786 0.9704 0.9494
—40 0.9751 0.9742 0.9668 0.9591 0.9391
—60 0.9628 0.9620 0.9550 0.9477 0.9286
T*— T,/°C  170.0 171.8 187.9 206.0 260.9

Numerical values of J for pressures and temperatures in the ranges
0 < Plk < 0.05, —60°C < T'— T, < 120°C

are set out in table 2. The results given in the first two columns represent the solution J(T°) of
the volume-temperature relation

L= Jm—maTy{t — (T, T)} Ji~ = o, (50)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Py
A \
‘A

/7

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

~

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

THERMO-MECHANICS OF RUBBERLIKE MATERIALS 391

obtained by setting P = 0 and replacing J by J'in (46) (or, alternatively, by combining equations
(43) and (45) with (15)). These figures are seen to uphold the statement, made in§4a, that Jis a
slowly varying function of 7" and, indeed, this property is observed to apply to J at each of the
pressures for which calculations have been made. At the foot of each column of table 2 appears the
maximum value of the temperature change 7"— T for which equation (46) can be solved for J at
the indicated value of P/x. These entries correspond to points on the limiting curve shown in
figure 3. '
(¢) The network response function f

The nature of the remaining response function fis most clearly revealed by experiments at the
reference temperature 7, in which the variation of stress (or load) with deformation is measured
over an extended range of strain and in circumstances in which the proportional contribution o
volume changes to the stress is O(%). One such situation, the extension of a cylinder, has been
considered in §4a, the stress—stretch relation (30) being obtained by retaining only the leading
term in the expansion of the axial stress o in powers of 9, and it can easily be verified, by appeal
to the constitutive equations (11), that the error incurred in neglecting volume changes is likewise
O(7) in any homogeneous deformation for which one or two of the principal stresses are equal to
the atmospheric pressure /7 (or to zero). Three deformations meeting this requirement (uniaxial
extension, pure shear and equibiaxial extension) have been utilized by Treloar (1944) in tests on
samples of a vulcanized natural rubber containing 8 %, of sulphur, the experiments involving the
imposition of extension ratios up to about 7.5.

In a recent study of the correlation of theory and experiment for rubberlike solids Ogden
(19724, b) has proposed a family of isothermal strain-energy functions for incompressible elastic
materials in the form of a linear combination of sums of like powers of the principal stretches,
and figure 4 of his first paper displays an excellent agreement between curves based upon a three-
term function of this type and the experimental data obtained by Treloar for the three deforma-
tions mentioned above. Ogden’s work provides a simple, yet acceptable, empirical form of the
network response function f appropriate to the special case of isochoric deformations (J = 1). In
the present, more general, context, it must be modified so as to comply with the requirement
thatf = Owhena, = a, = a3 (see equation (4)) and this is most readily accomplished} by adopting

the expression fla) = X (upe) (air + a%r + agr — 3J4e) (51)
r

which satisfies the normalization conditions (14) provided that
S ity = 2. (52)

In equations (51) and (52) @, and u, (r = 1,2, ...) are material constants, o, being dimensionless
and 1, having the dimensions of stress. For theoretical purposes the number of terms to which the
summations extend need not be specified, but in practice it is such as to secure an accurate
representation of experimental force-extension data for the material at hand. The analysis of
Treloar’s results given by Ogden (19724, §4) suggests that three terms will usually suffice and

T In his second paper Ogden (19725, §2) has constructed an isothermal strain—energy function for compressible
rubberlike solids by adding to the form proposed for incompressible materials a function of the dimensionless
specific volume J. The resulting theory differs in motivation and in detail from the treatment of isothermal
deformations at 7' = T, based upon equations (11) and (51). As regards the homogeneous deformations realized
in Treloar’s tests, however, the discrepancies between the force-extension relations supplied by the two approaches
are only O(7) and in neither case, therefore, is there appreciable interference with the very close agreement
between theory and experiment to which reference has just been made (cf. Ogden 19726, p. 573).
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that the goodness of fit is not particularly sensitive to the choice of values of ¢, and ,, an expedient
property also possessed by the response functions (43) and (44) in respect of the exponent m and
the bulk modulus «.

When the expression (51) for fis entered into the definition (19) the form of the network re-
sponse function appropriate to a biaxial state of strain is found to be

F(J,4) = ¥ (u,/pe,) (2T A~or 4 Aor — 3 J3ar), (53)

A simple calculation gives
(/A4 {AF, (1,00} + Fy(1, 4) = 5 (ty ) 457, = Fy (1, 4) = 5 (0 ]2) A-b,

and it follows that the constitutive inequalities (26) are satisfied if
Mo, >0 foreach 7. (54)

These conditions on the material constants &, and z, have been shown by Ogden (19724, §6;
1972 b, §4) to arise from more general considerations affecting the realistic mechanical behaviour
of elastic materials, and their implications have been studied in a variety of situations involving
non-homogeneous deformations of incompressible rubberlike solids (see Ogden & Chadwick
1972; Chadwick & Haddon 1972 and Ogden et al. 1973). The results obtained in §4 reinforce the
substantial evidence presented by these papers in favour of (54) as the basic restrictions applying
to the material constants when the contribution of the polymer network to the isothermal strain
energy of a rubberlike material is given an empirical representation of the type proposed by
Ogden.

The material constants derived by Ogden from the experimental results of Treloar are
ay =1.3, oy=50, o= —2.0,} (55)
fy = 6.3, s =0.012, pug=—0.1,

the values of x, here being in units of kgfcm~—2. These values are seen to meet the requirements
(54) and, when substituted into the normalization condition (52), to fix the shear modulus rela-
tive to the natural state N, at 4.225kgfcm~2 (= 4.143 x 102kPa), in good agreement with the
second entry in table 1.

We conclude this section with a further comment on the theory of Besseling & Voetman (1968).
On using equations (8.3) and (3.6) of their paper to calculate the Helmholtz free energy A(F, T')
then applying the definition (4) to the resulting expression, a complicated form of the network
response function is obtained of which the dominant part (normalized in accordance with (14)
and converted to the present notation) is

fla) = 3(3+B) (T} a} + a3 +a}) = 3} + 4(3 - By) (JH(ar® + a3 +45%) - 3}, (56)
Recognizable as a variant of the Mooney strain-energy function, the right side of equation (56)
contains a single (dimensionless) material constant £, which is assumed by Besseling & Voetman

to satisfy the conditions —} < £, < % (cf. Truesdell & Noll 1965, pp. 350-352). It follows from
(56), via the definition (19), that

(dJdA) {AF, (1, A)} = = 8Fy, (1, 4) = (3+5,) (24 +472) + (3 - ) (1 42475).

The network response function (56) therefore complies with the constitutive inequalities (26)
and the qualitatively correct account of thermoelastic inversion effects given in the final section
of Besseling & Voetman’s paper can be foreseen.
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6. EXTENSION OF A CYLINDER: NUMERICAL RESULTS

Relations linking the axial stretch A, the specific volume J and the temperature 7" of an
extended cylinder to the applied axial stress o and the ambient pressure /7 are obtained by
substituting into equations (21) and (22) the empirical forms (43), (45) and (53) of the response
functions, and the additional connexion between A, J and 7T which holds when the deformation
is performed isentropically is supplied by equation (23) (with § = ). No difficulty is encountered
in basing numerical calculations directly on these exact equations, but the proportional error
incurred in using the approximate formulae derived in §§44—d is in all cases of the same order of
magnitude as 9 (=& 2 x 107%), indicating a level of accuracy entirely adequate for purposes of
graphical display. We therefore employ the approximate results in conjunction with the ex-
pressions (43), (45) and (53) and note that the volumetric response functions enter the calcula-
tions only through the volume-temperature relation (50). The reader is reminded that the solu-
tion J(T') of this relation, computed with the aid of the data summarized below in (57), appears in
the first two columns of table 2

The numerical results presented in this section and in §7 are based upon

(i) the constants listed in table 1,
(ii) the exponents m = 9, n = § determined in § 5a, (57)
and (iii) the values (55) of a, and p,.

The manner in which these data have been assembled compels us to regard them as specifying
a hypothetical material and it would of course be preferable to work with constants referring to
an actual rubberlike solid whose thermo-mechanical response has been studied experimentally.
This would be feasible, however, only if compression and extension tests of the kinds discussed
in §§54 and 5¢ had been applied to samples of the chosen substance and no instance has been
found in the literature of a single material being subjected to such detailed investigation.

(@) Isothermal behaviour

To leading order in powers of 9 the dependence of the nominal axial stress s upon the axial
stretch A relative to N, the natural state at temperature 7 is specified by equation (29) with
J = J. On entering into this equation the expression (53) for the network response function we

obtain s = X p, J¥er-O(Jer=1 — J-der-1) (TT,). (58)

Isothermal stress—stretch curves, computed from equation (58), are shown in figure 4, and a
comparison of this plot with sets of experimentally determined isothermals given by Anthony
¢t al. (1942, p. 834) and Treloar (1958, p. 30) reveals an exact formal similarity.

The approximate formula for the dilatation accompanying isothermal extension at the
reference temperature 7;, derived from equations (31) and (53), is

T = = 0% () (1= A7), (59)

The variation of volume change with axial stretch represented by this equation is compared in
figure 5 with measurements reported by Gee et al. (1950), Hewitt & Anthony (1958) and Allen
et al. (1963). The theoretical curve evidently matches the trend of the experimental results and
predicts volume changes of the true order of magnitude.


http://rsta.royalsocietypublishing.org/

/

&
£\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

394 P. CHADWICK

20(™

15—

10—

slp
[

T=T,+80°C
T = Ty+40°C
T=T,
T = Ty+80°C
T=Tg+40°C
T="T,

\

[ A

A

1

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Ficure 4. Isothermal behaviour of an extended cylinder. Variation of the nominal axial stress with the axial
stretch (relative to the natural state N) at different temperatures (equation (58); data from (57)).
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Ficure 5. Isothermal behaviour of an extended cylinder. Experimental results of Gee ¢t al. (O, +), Hewitt &
Anthony ([, [, 71, _J) and Allen ¢f a/ (@) compared with the theoretically predicted variation of the volume
change with the axial stretch at the reference temperature T, (equation (59); data from (57)).
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(0) Isometric behaviour

In the leading approximation the equation which governs the variation with temperature of
the nominal axial stress s at fixed axial stretch A relative to N, is found by substituting from
equation (53) into (24) and setting J = J (or, more directly, by replacing A by J-*4 in equation
(58)). The result is s = 3 (A%t — Jhar A~bea1) (TYT), (60)

and isometric stress—temperature curves computed from this equation appear in figure 6. This
diagram reproduces the essential features of experimental data presented graphically by Meyer &
Ferri (1935, p. 578), Anthony et al. (1942, p. 831) and Shen ¢t al. (1967, p. 794).

4

101 1.4
< //
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1.1
1.05
, . . , 1.03
~25 0 25 50 &

(T=-TyIrc

F1cURE 6. Isometric behaviour of an extended cylinder. Variation of the nominal axial stress with the temperature
at different values of the axial stretch (equation (60); data from (57)).

From equation (34), in combination with (53), the isometric curve having zero gradient at
T = T, is found to correspond to an extension of 6.16 %, which is somewhat smaller than the
inversion level indicated by the experimental results. However, the numerical results upon which
figure 6 is based show that s decreases monotonically over the indicated range of temperatures
when /A = 1.05 and increases monotonically when A = 1.11, while for intervening values of A the
isometric curve has a maximum which increases as A increases. For the rubberlike material
specified in (57), and with reference to the temperature interval —25°C < T—T, < 75°C, the
inversion of the gradient of the isometric curves therefore occurs at extensions between 5 and 11 9,
the location of an inversion ‘point’ depending on the manner in which it is defined.

(¢) Isotonic behaviour

The approximate formulae for the axial and transverse coefficients of thermal expansion
obtained by introducing the network response function (53) into equations (37) are

Y= 1[Ts §m a, (A% + ;A~ker) ] ; o = (1 —aTp) A% +{1 + JaTi (e, — 2)}/1‘*“’],} (61)
Yo = (a—=y,).

33 Vol. 276. A.
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The variations of y, and y, with the axial stretch 4 are represented graphically in figure 7, and
marked on this diagram are points corresponding to measurements of the axial coefficient made
by Joule (1859, p. 106; see also Flory 1953, p. 437). Itis again apparent that the observed behaviour
of the specimen is correctly portrayed by the theory and the agreement between the computed
curves and the experimental points is quite satisfactory. The extension at which y, = 0 is found
to be 7.55 9.

104 K1

-6 o

Ficure 7. Isotonic behaviour of an extended cylinder. Experimental results of Joule (O) compared with the
theoretically predicted variation of the axial and transverse coefficients of thermal expansion with the axial
stretch at the reference temperature T, (equation (61); data from (57)).

(d) Isentropic behaviour

Equation (39), in combination with (53), yields the approximate expression

T—Ty = {poco(1+€)} 3 (u,]ar,) (1 = Ader) {(Abor —1) (Ader + 2) — T o} (62)

for the change in temperature resulting from extension of the cylinder under isentropic conditions.
Figure 8 shows the temperature-stretch curve computed from equation (62) together with
points representing experimental data due to Joule (1859, p. 105) and Dart (see James & Guth
1043, p- 475). Asin the preceding subsections there is complete qualitative accord between theory
and observation and, bearing in mind possible differences between the physical constants of the
rubbers used in the tests and those listed in (57), the agreement is quantitatively as close as could
be expected. The minimum point on the theoretical curve corresponds to an extension of 6.16 9,
and the extension at which the temperature change alters sign is 12.61 %,
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010

(T-Ty)[*C

0.05

Ficure 8. Isentropic behaviour of an extended cylinder. Experimental results of Dart (O) and Joule (+) com-
pared with the theoretically predicted variation of the temperature change with the axial stretch (equation
(62); data from (57)).

7. ISOTHERMAL DEFORMATIONS OF INCOMPRESSIBLE RUBBERLIKE MATERIALS

Extensive use has been made in §§4--6 of the fact that, for rubberlike materials and with refer-
ence to the natural configuration N, the isothermal bulk modulus « greatly exceeds the shear
modulus g. In isothermal deformations. at the reference temperature 7; such a material can,
for most practical purposes, be regarded as incompressible and, as first demonstrated by Rivlin
(1948, 19494, b), far-reaching developments in the analytical solution of particular problems
are then made possible. But the incompressibility condition J = 1 is physically inappropriate in
circumstances in which the temperature departs from the uniform value 7 since volume changes
due to thermal expansion are then precluded. The seemingly natural step of replacing J = 1 by a
constraint of the form J = ¢(7T') has been shown by Beevers (1969) to lead to equations which,
when linearized and applied to the study of small amplitude body waves, yield unacceptable
results, and in the same connexion Green ef al. (1970, p. 899) have encountered difficulties in
proving that solutions of initial-boundary value problems governed by the linearized equations
are unique. The discussion which now follows is concerned only with deformations occurring
under isothermal conditions and it is found possible, in this restricted context, to satisfactorily
incorporate into the model of rubberlike thermoelasticity formulated in §3 the concept of
mechanical incompressibility.

33-2
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(@) Isothermal deformations at T = T,

When the temperature is everywhere fixed at the reference point 7 the principal stress—
stretch relations provided by equations (11) are

0
o, = /LJ"laiéi +kg'(J). (63)
a;
The assumption that the material under consideration can undergo no volume change in
deformations at temperature 7y is associated with a formal limiting process in which x —o00 and
J -1 (implying, via (16),, that g’(J) — 0) in such a way that xg’(J) approaches a finite limit —g¢.
Equations (63) are then replaced by
;= ,uaia—af—q with a,a,a5 = 1. (64)
i
The quantity ¢, interpretable as a pressure, is not a specified function of the deformation.
On substituting into (64) the form (51) of the network response function and setting p = ¢+ Y u,
we obtain "
0; = uar—p with aa,a, = 1. (65)
r

These are the principal stress—stretch relations corresponding to the isothermal strain-energy
function for incompressible rubberlike materials proposed by Ogden (19724; see equation (14)).
Solutions of problems involving non-homogeneous deformations of circular cylinders and tubes
have been obtained, on the basis of equations (65), by Ogden & Chadwick (1972), Chadwick &
Haddon (1972) and Ogden et al. (1973), and spherically symmetric deformations and motions
governed by these equations have been studied by Ogden (19724, §5) and Chadwick (1974).

(b) Isothermal deformations at T =+ T,

It has been shown in § 35 that, in the absence of applied forces, a uniform temperature change
from T} to a value 7 in the interval J gives rise to thermal expansion represented by the con-
formal deformation N, N in which each of the principal stretches is equal to J¥ where J satisfies
the volume-temperature relation (15). If the material is assumed to be mechanically incompres-
sible volume changes can only be brought about by thermal expansion and isothermal deforma-
tions at temperature 7 are subject to the constraint a;a,a; = J. There is associated with this
assumptidn a formal limiting process in which «x —~c0 and J - J in such a way that the product of «
with the expression on the left of equation (15) approaches a finite limit — g, and the principal
stress—stretch—temperature relations (11) then assume the form

G} T .

At a representative particle the value of § depends upon a; and 7" but the relation is not speci-
fied a priori as part of the characterization of the material; in short, § is not a response function.
The result of entering the expression (51) for finto equations (66) and putting

F = @+ S Ji) (11T,

is o, = S, T (T|T) —p with  ayayay = J.
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These equations have a formal similarity with (65) which is most clearly exhibited by introducing
the principal stretches @; = J-3¥a; measured from the natural state N and defining

fy = /‘rj%ar_l(T/T;)) (r=1,2..), 2i= ;ﬁrar' (67)
Then o, = N, a—p with @ d,dg =1, (68)
r

and we conclude, on compafing (65) and (68), that the analysis of isothermal deformations of a
mechanically incompressible rubberlike material at a temperature different from 7, can be
deduced from the theory of isothermal deformations at the reference temperature by simply
regarding the principal stretches as reckoned from N and interpreting f, in accordance with
equation (67),. The resemblance between equations (67), and (52) suggests that j should be the
shear modulus of the material relative to the thermally expanded configuration N and it is not
difficult to confirm that this is indeed the case. Equation (13),, in conjunction with (11) and (12),
furnishes the expression
%,uf“%‘(azf/aaﬁ) ay=ay=ag=J ”( T/ T('))

for the shear modulus relative to N and this is found to equal /i when use is made of equation (51)
and the definitions (67).

As a simple application of the analogy which has just been set up we return once more to the
problem of the extension of a cylinder illustrated in figure 1. The connexion between the axial
stress o and the axial stretch /4 in deformations at the reference temperature 7j is established by
making the substitutions (18) (with J = 1) in the constitutive equations (65) and eliminating .
The result obtained is '

o = S (4 - A4
r

(cf. Ogden 19724, p. 572). On replacing g, by fi, and A by A the analogous relation for isothermal
deformations at temperature 7" is found to be

o = X, JAt (o Ab) (TYT;), (69)

and equation (58) is recovered on observing that s = J84-10, the cross-sectional area of the
cylinder in the natural state N being J# times its value in N,

The choice of a single-term network response function of the form (51) in which «; = 2 corre-
sponds, in relation to mechanically incompressible materials, to the adoption of the neo-Hookean
strain—energy function for deformations at the reference temperature 7. Equation (58) then

reduces to
s = pJH(A—A7%) (TITy) = p(A—JA) (T]T), (70)

a result which differs (by a factor of J#% on the right) from the force-extension relation for this
problem given by Blatz (1969, equation (149)1). Blatz’s derivation of equation (70) is based upon
a theory of mechanically incompressible rubberlike materials which proceeds from first prin-
ciples and regards the principal stretches g; relative to N and the temperature 7 as independent
variables. The theory yields an analogy between the principal stress—stretch relations governing
isothermal deformations at temperatures 7y and T'(+7;) (see Blatz 1969, equation (134))

1 Blatz’s article contains some misprints. In the cited equation the first minus sign should indicate equality and
in the first exponent 0 should be replaced by 2.

33-3
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which, applied to equations (65), reproduces (68) but with (67), replaced by fi, = x,J1(T|T;).
This difference accounts for the discrepancy noted above. In fact the variables chosen by Blatz
are not independent, owing to the dependence of the d; upon T, and it is basically for this
reason that the treatment of rubberlike thermoelasticity given in his article is judged, in the light
of the present work, to be defective.

(¢) Combined torsion and extension of a circular cylinder

As a more substantial application of the theory developed in § 74 we consider in this concluding
subsection a non-homogeneous deformation for which experimental results, obtained under
isothermal conditions and at different temperatures, are available. The tests in question were
carried out by Boyce & Treloar. (1970) and the solution of the corresponding problem in finite
elastostatics has been obtained, on the basis of the constitutive equations (65), by Ogden &
Chadwick (1972, §2).

In the experimental situation a circular cylindrical test-piece is maintained at a fixed uniform
temperature and deformed first by the application of a uniaxial extension, then by twisting about
the axis of symmetry. The variation with temperature of the torque needed to maintain a specified
angular displacement of one end of the cylinder relative to the other was measured by Boyce &
Treloar and found to be linear with positive gradient throughout the ranges of torsional and
extensional strain investigated and for samples of various vulcanizates of natural rubber.

The theoretical work of Ogden & Chadwick refers to combined torsion and extension at the
reference temperature 7; of a circular cylinder composed of an incompressible rubberlike material
conforming to the principal stress—stretch relations (65). It is assumed that the curved surface of
the cylinder is stress-freet and that tractions are applied to the end-faces which ensure that the
cylindrical form of the bounding surface is preserved in the deformation. Under these conditions
the cylinder is held in equilibrium solely by the action of the surface tractions and the resultant
torque which must be exerted on each end-face in order to support the deformation is given by

M = 273 S, e HF (AL a; 0, + 2) + F (AL a5, — 2) — (AR 4+ A3 F (AL g;0,)),  (71)

where a = YA (TR)2 + (A + A2 4+ LA (rR)2 + (AF — A1)} (72)
and Flx,y;0) = (y*+y = —x*—x%)[a, F(x,y;0) =0

(see Ogden & Chadwick 1972, equations (27) and (26)). Here A is the axial stretch, 7 the twist per
unit extended length and R the radius of the cylinder in the natural state N,. The angle through
which one end-face is turned relative to the other is hence 7AL radians where L is the length of the
cylinder in N,

In order to deduce from equation (71) a formula for the torque required to maintain a deforma-
tion of the cylinder at uniform temperature 7'€.7" in which the length and the total twist retain
their former values (AL and 7AL) we follow the procedure laid down in § 74. The , are replaced
by the f, (defined by equation (67),), the strain parameters A, 7 by A, #, their counterparts
measured in relation to the natural configuration N, and the dimensions R, L by R = J#R,
I = JiL, the radius and length of the cylinder in N. Since AL = AL and #AL = 7AL it follows that

1 In the laboratory this surface is subject to atmospheric pressure, but since attention is confined here to the
torque acting on the cylinder no correction is needed.
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A = J-#A and # = 7, and the required equation representing the variation of torque with tem-
perature at constant strain is therefore

M = 2n1-3 % p W= F (J-IAE, G o, + 2) :
' +F(JAN, 85 0, - 2) — (JWAd 4 JIH) F(J4, 850, (T)T),  (73)
@ = H{(JN)} (TR)? + (JHAR + JIA-D)BE+ J{(JA)} (7R)? + (J-1AE — JIA- D)3 (74)

where

and J is given by the volume-temperature relation (50).

TR
1.0
: 16
0.8
/1'21/ 0.6
N — o8 //0.4
/ :
04} R
I——
Il 1 1 1 1 1 1 I il
—20 20 40 60
(T-Ty)/°C

Ficure 9. Combined torsion and extension of a circular cylinder. Variation of the torque with the temperature at
indicated values of the torsional strain parameter and at 25 %, extension (equation (73); data from (57)).

The special form of equation (73) obtained by adopting the ‘neo-Hookean’ single-term net-
work response function with a, = 2 is

M = yrpJrRUTITy) = ymp-$eRY(TIT;), (75)

a result which may appropriately be compared with a theoretical torque-temperature relation
derived by Treloar (19696, equation (82)). Treloar’s formula, which is based upon constitutive
equations associated with a modified form of the statistical theory of Gaussian networks, differs
from equation (75), only by a factor on the right representing the effect of cross-linking on the
mean-square end-to-end length of the network chains (see Treloar 1969a, p. 280). It follows from

(75), that
OM[OT = (M|T) (1+4&T),

where & = J-10J[dT is the volume coefficient of thermal expansion relative to N. The torque is
therefore a monotonically increasing function of the temperature for all values of the torsional
and extensional strain parameters and no thermoelastic inversion effect is in evidence (cf.
Treloar 19694, p. 300).
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In the general solution (73) the value of MT;/T corresponding to specified values of 7 and A
is approximately constant on account of the weak dependence of Jupon T indicated by the first
two columns of table 2. In fact M7;/ T is approximately equal to the expression on the right of
equation (71) which, as pointed out by Ogden & Chadwick (1972, figure 1), increases mono-
tonically with 7 at a fixed value of the axial extension A. These features are confirmed by numeri-
cal calculations based upon equation (73), with (74) and (50), and the data summarized in (57).
A selection of the results is presented graphically in figure 9 which correctly reproduces the
pattern of torque-temperature curves determined experimentally by Boyce & Treloar (1970,
figure 4). In both the computations and the measurements the coefficient 0A//0 T, evaluated at
constant deformation, is of one sign, suggesting that the absence of anomalous thermoelastic
behaviour, noted above in connexion with the special temperature-torque relation (75), is a
typical property of rubberlike materials.

I am grateful to Professor L. R. G. Treloar and Dr R. W. Ogden for helpful discussions on the
mechanics and thermodynamics of rubberlike materials and to Mr E. W. Haddon of the U.E.A.
Computing Centre for carrying out the bulk of the numerical work described in §§5-7. The
assistance of my former research student Dr L. T. C. Seet in investigating earlier versions of
the ideas advanced in this paper and in making many trial calculations is also gratefully
acknowledged.
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